The Fly's Eye camera system

a proposed instrument for large étendue time-domain survey

IAU XXVIII. General Assembly, Beijing, China

Krisztián Vida (kvida@flyseye.net), András Pál, Zsolt Regály, Katalin Oláh, Csaba Kiss, László Döbrentei, György Mező

20 – 31 August, 2012

http://flyseye.net/

Optical imaging instruments

What are the basic parameters of an instrument?

- aperture size;
- field of view;
- detector resolution;
- imaging resolution;
- physical detector size;
- focal ratio;
- étendue (FOV area multiplied by effective light collecting area, deg²m²);
- sampling cadence.

These are not independent quantities, and all of them determine the usability and the types of practical applications of a certain optical and/or imaging system (e.g. a telescope).

Étendue and resolution

Fig. 1: Effective resolution and optical étendue of some currently operating and proposed telescopes. LSST is expected to have the largest étendue among both the available and proposed telescope designs.

Resolution, cadence and sky coverage

Fig. 2: The imaging resolution, data sampling cadence and cumulative sky coverage of various optical telescope systems having an étendue in the regime $30 - 50 \,\mathrm{deg^2 m^2}$. Now the "high cadence – high coverage – low resolution" (bottom left) corner is empty.

The Fly's Eye camera mount

The current design concepts are the following:

- 19 wide-field cameras, equipped with Sloan g/r/i filters, covering the sky above the 30° ≤ h horizontal altitude.
- Lenses: $f = 85 \,\mathrm{mm}$, $f/1.2 \to \mathrm{photometric}$ precision is $4-5 \,\mathrm{mmag}$ for $r = 10^{\mathrm{m}}$ stars, expecting a sampling cadence of $3 \,\mathrm{min}$. Limitations: confusion noise. Practical limit: $r \le 15-16^{\mathrm{m}}$ (close to the saturation limit of LSST).
- Effective resolution: 22"/pixel, by employing $4k \times 4k$ KAF16803 detectors (0.32 Gpixels in total per unit). Étendue: $\approx 40 \, \mathrm{deg^2 m^2}$ (instruments with similar values: Kepler spacecraft, a single Pan-STARRS telescope).
- Minimization of moving parts: local sidereal tracking involving a <u>hexapod</u> mount; onboard computing using SBCs (single-board computers) with no moving components; off-the-shelf, commercially available components.
- Camera platforms: $\approx 50\,\mathrm{kg}$ of instruments (cameras, lenses, filters), with a base diameter of $\approx 60\,\mathrm{cm}$ and an effective diameter of $\approx 1\,\mathrm{m}$.
- Data reduction: efficient software solutions are available (FITSH), it is possible to perform on-the-fly with the proposed sampling cadences. Data flow: few hundreds of gigabytes on a clear night.

The camera mount

Fig. 3: A visualization of the camera mount. The payload platform – on which the 19 cameras are mounted – is shown to scale. The hexapod legs are merely figurative, however, the retracted length of these is the same as implied by the scale. The characterisic size of the instrument is ≈ 1 m.

The total field-of-view

Fig. 4: The field-of-view of the 19 cameras shown on an all-sky image. The estimated FOV of each camera-lens pair would be roughly 26°. The placement and field orientation of the cameras are exactly the same as it is implied by the previous figure.

Data acquisition

Data acquisition schemes:

- ullet 3 sidereal minutes of exposures (+ readout) o duty cycle is roughly 91%.
- Image expositions are scheduled via "global" (Greenwich) sidereal time, so all instruments of the future network will measure the same area at the same time.
- Filter sequences: periodic in all filters, every second is Sloan r' (highest quantum efficiency, central both in ugriz and gri.

Fig. 5: Filter sequences of g/r/i = 1/2/1, period: 4 frames (12 minutes). This is the preliminary filter subset and sequence.

Data acquisition

Fig. 6: Filter sequences of u/g/r/i/z = 1/1/4/1/1, period: 8 frames (24 minutes).

Fig. 7: Filter sequences of u/g/r/i/z = 1/2/6/2/1, period: 12 frames (36 minutes). This is the planned final filter set and sequence.

The advantages of a network

Similar camera systems placed on various locations:

- 7 − 8 of such camera systems yield a total étendue similar to LSST.
- Persistent time domain survey.
- Monitoring the whole sky in the bright ($r \lesssim 15^{\rm m}$) magnitude regime.
- Cadence: few minutes (LSST or Pan-STARRS: few days). Co-location: higher phase coverage, less aliases.
- The expected data flow rate also implies special techniques.
- Currently planned locations: Konkoly Observatory (initial development, performance tests and verifications, etc.); Tenerife, Teide Observatory...?
 Negotiations are underway, informal contact with some sites (Chile, Canadian Arctic) are initiated any further suggestions/possibilities/offers are most welcome!

The advantages of a network

Fig. 5: A long-term plan: Projected coverage areas of 9 Fly's Eye units, located in various places.

Other advantages

Some additional advantages of the current design concepts:

- "open design, open source and open data" model
- robust mechanical design:
 - an enclosure with optical windows;
 - regulated temperature and humidity inside the enclosure;
 - \Rightarrow suitable for harsh environment;
 - lack of unique mechanical and optical components;
 - redundancy in the hexapod: 3 out of 6 legs could completely be stuck
 - similar instrument independently from the geographical location;
 - simple installation: no need for polar alignment;
- cost-effective: one instrument has an estimated cost roughly 300 330 k€ (360 – 400 k\$).

Scientific key projects

Some of the currently discussed scientific projects:

- atmospheric phenomena (e.g. meteors);
- Solar System: unbiased photometric sample of 10k main belt asteroids and flybys of near-Earth objects;
- Astrophysics of young stellar objects;
- Stellar activity and pulsating variables;
- Eclipsing stellar systems and transiting extrasolar planets (uninterrupted monitoring, discovery, color information, etc);
- Extragalactic astrophysics: nearby supernovae;
- complementary to both LSST and "Mascara"

Additional projects or application ideas:

- photometric and imaging data will also be publicly available (search and analysis of moving targets, extended sources, etc.);
- a small workshop sometimes in 2013: further projects and involvements (contact list at the poster at "late posters" at the back of the poster room/me!).

Milestones

Some more relevant milestones in the timeline of the project:

- 2011 summer: the first design initiatives of the Fly's Eye camera system;
- 2012 February: a proposal has been submitted to the Hungarian Academy of Sciences (HAS), applying for funds to build a full working instrument;
- 2012 April —: theoretical and mechanical design of the hexapod platform;
- 2012 June: the proposal has been accepted by the HAS;
- 2012 fall: seeking for grants to build two other Fly's Eye devices;
- 2012 December: the hexapod platform is expected to be ready and working;
- 2013 summer: the first measurements using a reduced number of cameras (5 out of 19), covering the full declination strip between 45 - 55° and partially the strip 35 - 65°.
- 2013 winter: the assembly of the housing and tests in harsh environment;
- 2014 summer: and increasing the number of cameras (up to 10 12);
- until the end of 2015: purchasing and assembling the remaining cameras.

Thank you

See also the poster at "renegade posters" – at line 17 in the end of the poster room